

Brushless DC Motor Controller

Features and Benefits

- 12V to 40V Operating Range
- On-Chip "Boost" Voltage Allows Use of All N-Channel Drivers
- Undervoltage Lockout
- On-Chip PWM Oscillator
- PWM Speed Control via Bottom Drivers
- Forward and Reverse Control
- BVDSS > 60V
- Selectable 60° or 120° Sensor Electrical Phasings

Applications

Brushless DC Motor Control

Ordering Information

Part No. Temperature Suffix Package Code MLX90401 E(-40°C to 85°C) DF (24 Lead SOIC)

1. Pin connections

1	Supply Voltage	Cap Boost "A"	24
2	V _{REF} Out	Gate Top "A"	23
3	Hall "A" Input	Feedback "A"	22
4	Hall "B" Input	Cap Boost "B"	21
5	Hall "C" Input	Gate Top "B"	20
6	Fwd/Rev Input	Feedback "B"	19
7	Speed Adjust Input / Disabl	e Cap Boost "C"	18
8	Oscillator R/C	Gate Top "C"	17
9	/Brake Input	Feedback "C"	16
10	Analog Ground	Gate Bottom "A"	15
11	60°/120° Select Input	Gate Bottom "B"	14
12	Power Ground	Gate Bottom "C"	13

2. Description

The MLX90401 is a three-phase brushless DC motor controller, designed to meet the needs of high volume, low cost motors with 60° or 120° electrical sensor phasings which do not require the expensive options needed for servo or other closed loop applications.

The use of CMOS technology offers dense logic as well as high voltage (60V) driver capabilities. The use of discrete low cost N-channel power FETs reduces overall system cost and the device provides all of the logic necessary to interface Hall-effect position sensors to N-channel power FETs. Upper N-channel power FETs require a gate drive in excess of the supply voltage V+, and with the device's on-chip "boost" voltage, the use of all N-Channel power FETs is allowed.

Control inputs are provided for motor speed, forward or reverse direction, disable, and braking. Also 60° or 120° electrical sensor phasings can be set externally.

The device is offered in a 24 Lead "Wide-Body" SOIC package (DF).

Brushless DC Motor Controller

TABLE OF CONTENTS

FE/	ATUI	RES AND BENEFITS	. 1
API	PLIC	CATIONS	. 1
OR	DER	RING INFORMATION	. 1
1.	PIN	N CONNECTIONS1	-1
2.	DE	SCRIPTION2	-1
3.	ML	X90401 ELECTRICAL SPECIFICATIONS	. 3
4.	BL	OCK DIAGRAM	. 5
5.	PIN	N FUNCTION DESCRIPTION	. 6
6.	GE	NERAL DESCRIPTION	. 7
6 6 6 6	.1. .2. .3. .4. .5.	COMMUTATION DECODING AND OUTPUT CONTROL LOGIC OSCILLATOR DISABLE PULSE WIDTH MODULATION DRIVE OUTPUTS UNDERVOLTAGE LOCKOUT	7 7 8
7.	LO	GIC TABLE	. 9
8.	AB	SOLUTE MAXIMUM RATINGS	. 9
9.	TYF	PICAL APPLICATION	10
10.	API	PLICATION COMMENTS	10
_	0.1.		
11.	REI	LIABILITY INFORMATION	10
12.	ESI	D PRECAUTIONS	11
13.	PAG	CKAGE INFORMATION	11
11	פוח	SCI AIMED	12

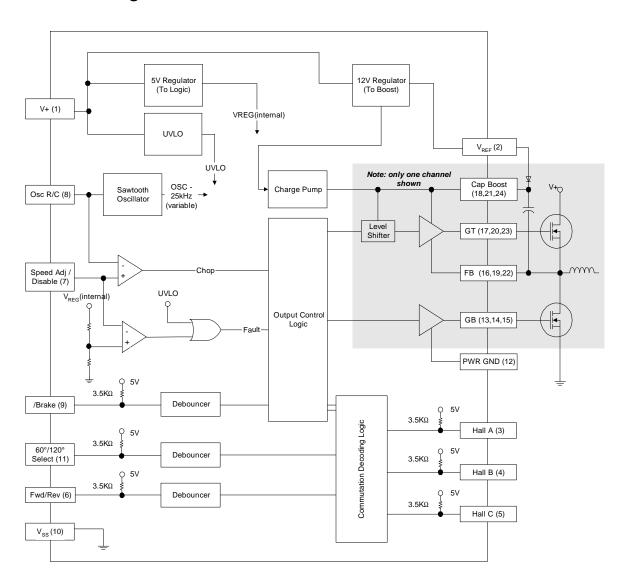
Brushless DC Motor Controller

3. MLX90401 Electrical Specifications

DC Operating Parameters T_A = -40°C to 85°C, V_{DD} = 15V (unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Supply Voltage	V_{DD}	Operating	8	24	44	V
Supply Current	ldd	Operating		20	35	mA
	Volt	age Reference, Undervoltage, Osci	llator			
Output Voltage	V _{REF}		8	12	15	V
Output Current	I _{REF}				10	mA
Undervoltage	V _{UV}	Operating		8		V
Oscillator Frequency	fosc	Operating, Rosc=10k, Cosc=5kΩ	22	25	28	kHz
Frequency Drift	dfosc	Operating		TBD		
Logic Inputs Senso	or (Pins 3,4	,5), Fwd/Rev (pin 6), /Brake and 60°	°/120° Se	lect (Pins	9,11) Inp	uts
High State	V _{IH}		3.5			V
Low State	V _{IL}				1.5	V
High State Input Current	Іін				1.0	mA
Low State Input Current	l _{IL}				2.0	mA
		Disable Input (Pin 7)				
High State	V _{IH}		4.2			V
Low State	V _{IL}				3.5	V
High State Input Current	Іін				1.0	mA
Low State Input Current	I _{IL}				1.0	mA
		Debouncing				
Debounce Time (60°/120° Select, Fwd/Rev) ¹⁾	t _{delay1}		18	25	35	ms
Debounce Time (/Brake)1)	t _{delay2}		2	3.2	4.4	ms
Delay after Start-up ²⁾	t _{delay3}		18.6	25.6	35.6	ms
		Charge Pumps				
Output Current	locp				100	μA
		Drivers				
Top Output On-Resistance	R _{ON,T}	I _{LOAD} = 50mA			50	Ω
Bottom Output On-Resistance	R _{ON,B}	I _{LOAD} = 50mA			50	Ω
Rise Time	t r				150	ns

Brushless DC Motor Controller


Fall Time	t _f			150	ns
Turn-on Propagation Delay	$t_{d,on}$			300	ns
Turn-off Propagation Delay	$t_{ m d,off}$			300	ns
		Top Drivers	·		
Leakage Current	loff	V _{OUT} = 60V		-10	μA
Voltage Drop	Vol	I _{OUT} = 50mA	1.3	1.6	V
		Bottom Drivers			
Voltage Drop High State	V _{OH}	I _{OUT} = 100mA	1.3	1.6	V
Voltage Drop Low State	V _{OL}	I _{OUT} = 100mA	1.3	1.6	V

Note:

- 1) t_{delay1} and t_{delay2} depend on f_{osc} and timing of the signals to be debounced. 60°/120° Select and Fwd/Rev are debounced using a clock with a frequency of $256*f_{osc}$. /Brake is debounced using a clock with a frequency of $32*f_{osc}$. Debouncing takes between 2 and 3 clock cycles. Typical example for, say 60°/120° Select: $2.5*256*1/f_{osc} = 2.5*256*1/25kHz = 25.6$ ms.
- 2) t_{delay3} depends on f_{osc} . Precautions are taken that t_{delay3} is *always* larger than t_{delay1} , so that there are only output signals when the chip is in the correct state.

Brushless DC Motor Controller

4. Block Diagram

Brushless DC Motor Controller

5. Pin function description

Pin	Symbol	Description
1	Supply voltage V+	External power supply voltage.
2	VREF Out	Regulated reference voltage (12V) derived from V+. Used to power external components and Hall-effect sensors, and for boost voltage.
3-5	Hall "A", "B" and "C" Inputs	Hall IC open collect inputs. Pull-up resistance of 3.3k to 5V.
6	Fwd/Rev Input	The Forward/Reverse Input is used to change the direction of motor rotation. A logic high state selects forward direction, a logic low state selects reverse direction. Pull-up resistance of 3.3k to 5V.
7	Speed Adjust Input/Disable	Potentiometer input - adjusts the PWM duty cycle setting current, allowing a manual speed adjustment. Disable input can be used in combination with any type of switch (thermal, Hall,). A logic low on this pin selects the disable function.
8	Oscillator RC	The Oscillator frequency is set with the values selected for the timing components RRC and CRC.
9	/Brake Input	A logic high state at this input allows the motor to run, while a low state causes rapid deceleration. Pull-up resistance of 3.3k to 5V.
10	Analog ground	Ground pin for analog blocks.
11	60°/120° Select Input	A logic high state on this pin selects 60° sensor electrical phasing, a logic low state selects 120°. Pull-up resistance of 3.3k to 5V.
12	Power Ground	Ground pin for digital and output drivers.
13-15	Gate Bottom "A", "B" and "C"	Three push-pull drivers for direct drive of bottom power switch transistors.
16, 19, 22	Feedback "A", "B" and "C"	This pin is negative supply of the top drive circuitry. It is the connection for the negative side of the bootstrap capacitor, the top power FET Source, the bottom power FET Drain, and the Phase C output.
17, 20, 23	Gate Top "A", "B" and "C"	Three push-pull drivers for direct drive of top power switch transistors.
18, 22, 24	Cap Boost "A", "B" and "C"	This pin is the positive supply of the top drive circuitry. The boost capacitor is connected between this pin and Feedback.

Brushless DC Motor Controller

6. General Description

The MLX90401 contains all of the functions for controlling three-phase brushless DC motors in open loop applications.

The MLX90401 provides commutation from Hall-effect sensors. The chip contains a rotor position decoder for proper commutation sequencing, a voltage reference that supplies power for the sensors, a pulse width modulator based on a frequency programmable sawtooth oscillator and three top and three bottom drivers. Using a bootstrap/charge pump combination, the MLX90401 also generates a boost voltage to drive the top power FET. In this way the application only uses N-channel power FETS, to reduce overall system cost.

The MLX90401 supports following control functions: speed control, forward or reverse rotation, braking and disable.

Also an undervoltage lockout is provided. The MLX90401 can be configured for motors with 60° or 120° sensor electrical phasings, using a select pin.

6.1. Commutation decoding and output control logic

An internal digital circuit converts the signals from the Hall-effect position sensors into the proper sequencing of top and bottom drive outputs.

60° or 120° sensor electrical phasing can be selected by an external pin (60°/120° Select, pin 11)

The Forward/Reverse input (pin 6) is used to change the direction of motor rotation. If the /Brake input (pin 9) is pulled low, bottom drivers are turned on, while top drivers are turned off, thus braking the motor. These six inputs all have internal pull-up resistors (3.3k Ω to 5V).

Inputs 60°/120° Select, Fwd/Rev and /Brake are debounced to make sure that the device doesn't enter the wrong state, due to noise and/or spikes.

The fact that these signals are debounced, also means that there is a delay in these signals. Whenever one of the external signals that are debounced is changed, it takes time till the outputs change accordingly (ca. 25ms for the 60°/120° Select and Fwd/Rev inputs, ca. 3ms for /Brake).

After start-up, the outputs are disabled for a given time, in order to provide for the time necessary for the debouncing circuits on

60°/120° Select and Fwd/Rev to settle and output the correct signal. (/Brake is debounced with a shorter time so settles a lot sooner.)

6.2. Oscillator

The frequency of the internal ramp oscillator is set by the values selected for timing components R_{T} and C_{T} . Capacitor C_{T} is charged from the Reference Output (Pin 2) through Resistor R_{T} and discharged by an internal discharge transistor. The ratio of the ramp peak and valley voltages, referred to the Reference Output voltage are typically 0.65 and 0.3V respectively. To provide a good compromise between audible noise and output switching efficiency, an oscillator frequency in the range of 20 to 30 kHz is recommended.

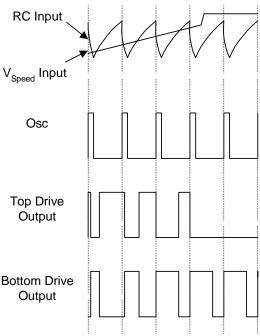
6.3. Disable

Pin 7, Speed Adjust Input/Disable, is to be connected to an external potentiometer, used to set motor speed.

The input can also be used as a Disable input, turning off all output drivers. This Disable input can be used in many ways. A thermal switch could be used to provide thermal protection. Or a Hall switch could be used to provide protection against overcurrent, etc.

Disable has a higher priority than /Brake. If for instance Disable is active, braking will not have any effect. If /Brake is active at the moment that Disable is made active, all braking will be stopped.

6.4. Pulse width modulation


The use of pulse width modulation provides an energy efficient method of controlling the motor speed by varying the average voltage applied to each stator winding during the commutation sequence. As C_T discharges, the oscillator allows conduction of the top and bottom drive outputs. The PWM comparator terminates the bottom drive output conduction when the positive-going ramp of C_T becomes greater than the Speed Adjust Input. In order to minimize dissipation in the internal diodes of the external top switch transistors, due to free-wheeling currents, the PWM acts also on the top FET, by turning it on when the corresponding bottom FET is off. The pulse width modulator timing diagram is shown below.

(Braking the motor does not depend on the PWM setting. It is always done at 100%.)

Brushless DC Motor Controller

PWM Timing Diagram

Note

Top and Bottom Drive Output Diagrams assume commutation logic gives 1 for bottom switch and 0 for top switch. In case the commutation logic gives 0 for bottom Switch and 1 for top switch, the PWM does not act on them.

6.5. Drive outputs

The bottom drivers consist of a push-pull driver between the 12V reference voltage and ground. The top drivers use an improved push-pull architecture to guarantee proper drive of the top FETs.

Because the top driver utilizes a bootstrap/charge pump combination, use of only N-channel power FETs for the three-phase bridge is possible. This leads to a reduced system cost.

Internal charge pumps precharge the boost capacitors ensuring full drive of upper power FETs at start-up.

During normal operation, boost is maintained with an external diode and capacitor. The charge pumps compensate for potential leakage currents, in order to ensure that the upper power FETs are driven properly at all time.

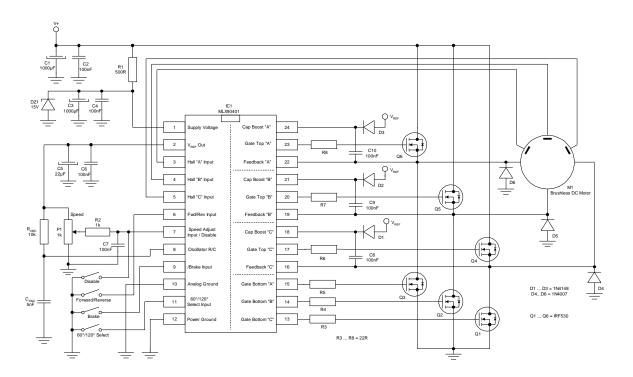
6.6. Undervoltage lockout

Should the voltage level on V_{DD} drop below 7V, all gate drives will be turned off until the undervoltage condition is gone. This to prevent improper drive of the power FETs.

Brushless DC Motor Controller

7. Logic table

Following logic table shows the output state in function of the inputs. It summarizes the different functions of the MLX90401


Motor		Inputs Outputs															
position		Senso	or Electi	ical Ph	nasing		Fwd/ Rev	/Brake	Т	Top Drive		Bottom Drive			Motor phases		
		60°			120°		1										
	SA	SB	SC	SA	SB	SC			TA	TB	TC	ВА	BB	BC	PA	PB	PC
0°	0	0	0	1	0	1	1	1	1	0	0	0	1	0	٨	٧	-
60°	1	0	0	1	0	0	1	1	1	0	0	0	0	1	^	-	٧
120°	1	1	0	1	1	0	1	1	0	1	0	0	0	1	-	٨	٧
180°	1	1	1	0	1	0	1	1	0	1	0	1	0	0	V	٨	-
240°	0	1	1	0	1	1	1	1	0	0	1	1	0	0	٧	-	٨
300°	0	0	1	0	0	1	1	1	0	0	1	0	1	0	-	٧	^
0°	0	0	0	1	0	1	0	1	0	1	0	1	0	0	٧	٨	-
300°	0	0	1	0	0	1	0	1	0	1	0	0	0	1	-	٨	٧
240°	0	1	1	0	1	1	0	1	1	0	0	0	0	1	٨	-	٧
180°	1	1	1	0	1	0	0	1	1	0	0	0	1	0	٨	٧	-
120°	1	1	0	1	1	0	0	1	0	0	1	0	1	0	-	٧	٨
60°	1	0	0	1	0	0	0	1	0	0	1	1	0	0	٧	-	^
	Х	Х	Х	Х	Х	Х	х	0	0	0	0	1	1	1	٧	V	٧

8. Absolute Maximum Ratings

Supply Voltage, V _{DD} (operating)	-0.3 to 45V
Output Voltage on Pins Gate & Boost	60V
Voltage on Pins 17,18,20,21,23,24	-0.3 to 60V
Power Dissipation, P _D	500mW
Operating Temperature Range, T _A	-40 to 85°C
Storage Temperature Range, T _S	-40 to 125°C

Brushless DC Motor Controller

9. Typical Application

10. Application Comments

10.1. Demo board

A Demo board was designed to facilitate the evaluation of the MLX90401 and the design of new applications. A description of the Demo board can be found on the Melexis website at www.melexis.com. The Demo board can be ordered online.

11. Reliability Information

Melexis devices are classified and qualified regarding suitability for infrared, vapor phase and wave soldering with usual (63/37 SnPb-) solder (melting point at 183degC). The following test methods are applied:

IPC/JEDEC J-STD-020A (issue April 1999)

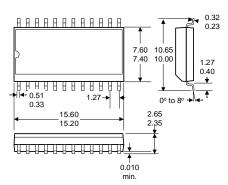
Moisture/Reflow Sensitivity Classification For Nonhermetic Solid State Surface Mount Devices CECC00802 (issue 1994)

Standard Method For The Specification of Surface Mounting Components (SMDs) of Assessed Quality MIL 883 Method 2003 / JEDEC-STD-22 Test Method B102 Solderability

For all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature, temperature gradient, temperature profile etc) additional classification and qualification tests have to be agreed upon with Melexis.

Brushless DC Motor Controller

The application of Wave Soldering for SMD's is allowed only after consulting Melexis regarding assurance of adhesive strength between device and board.


For more information on manufacturability/solderability see quality page at our website: http://www.melexis.com/

12. ESD Precautions

Electronic semiconductor products are sensitive to Electro Static Discharge (ESD). Always observe Electro Static Discharge control procedures whenever handling semiconductor products.

13. Package Information

All dimensions in millimeters

Brushless DC Motor Controller

14. Disclaimer

Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. Melexis reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with Melexis for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by Melexis for each application.

The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of Melexis' rendering of technical or other services. © 2002 Melexis NV. All rights reserved.

For the latest version of this document, go to our website at:

www.melexis.com

Or for additional information contact Melexis Direct:

Europe and Japan:

All other locations: Phone: +32 13 67 04 95 Phone: +1 603 223 2362
E-mail: sales_europe@melexis.com E-mail: sales_usa@melexis.com

QS9000, VDA6.1 and ISO14001 Certified